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Dipartimento di Fisica, dell’Università del Salento and INFN, Sezione di Lecce,
I-73100 Lecce, Italy

E-mail: scolarici@le.infn.it and solombrino@le.infn.it

Received 24 July 2008, in final form 15 October 2008
Published 6 January 2009
Online at stacks.iop.org/JPhysA/42/055303

Abstract

We analyse some features of alternative Hermitian and quasi-Hermitian
quantum descriptions of simple and bipartite compound systems. We show
that alternative descriptions of two interacting subsystems are possible if and
only if the metric operator of the compound system can be obtained as a tensor
product of positive operators on component spaces. Some examples also show
that such property could be strictly connected with symmetry properties of the
non-Hermitian Hamiltonian.

PACS numbers: 03.65.−w, 03.65.Ca, 03.67.−a

1. Introduction

In the past few years, since a conjecture by Bender and Boettcher [1], a growing interest
has been witnessed in PT -symmetric non-Hermitian Hamiltonians with real spectra [2, 3].
Today, it is well known that PT -symmetry actually constitutes a concrete, physically relevant
realization of η-pseudo-Hermiticity property [4, 5] defined by relation

ηHη−1 = H †, (1)

with η Hermitian and invertible.
In the context of the pseudo-Hermitian quantum theory (PHQM) a relevant role is played

by the quasi-Hermitian Hamiltonians, i.e., those pseudo-Hermitian Hamiltonians admitting a
positive-definite inner product invariant under their dynamics [6]. Although non-Hermitian,
these Hamiltonians turn out to be sufficiently close to those of conventional quantum mechanics
(QM) (in particular they are necessarily diagonalizable with real spectrum [5, 7]) and therefore
a standard quantum language is allowed to describe the predicted results.

Actually, a complete mathematical equivalence between PHQM and QM can be proven, at
least if one considers simple quantum systems, since a unitary mapping exists which connects
the corresponding Hilbert spaces [8–10]; more directly, such equivalence can also be proven
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by showing the equivalence of the spectra associated with the two systems [11] (we recall
however that the physical interpretation of PHQM is still controversial, as the living debate
on the quantum brachistochrone proves [10, 12, 13]). Finally, let us note that these theories
can be considered alternative Hamiltonian descriptions for quantum systems (see for instance
[14] and references therein).

Now, a remarkable picture of Hermitian and quasi-Hermitian dynamics,

i
d

dt
|ψ〉 = H |ψ〉 (2)

is the existence of a (possibly infinite) set of dynamically invariant η-inner product
characterized by positive operators η [4] and defined by

hη(., .) = h1(., η.), (3)

where h1(., .) denotes the standard or fiducial inner product in the Hilbert space H. Hence,
the possibility of alternative quantum descriptions naturally arises in this context so that we
will study in depth these topics both for Hermitian and for quasi-Hermitian Hamiltonians.
In particular, in section 2, we will show that the expectation value of the energy observable
strongly depends on the alternative inner product, and that to different alternative descriptions
associated with the same (non-pure) density state, correspond different values of von Neumann
entropy. These results can contribute, in our opinion, to clarify the real meaning of the above-
mentioned equivalence between PHQM and QM.

Moreover, since, of course, any physically meaningful theory must be able to describe
compound systems, we will extend PHQM to include bipartite quantum systems, in order
to verify if the equivalence between PHQM and QM (which, as we said above, has been
already stated in the literature only for simple systems) can be proven also at the level of
compound systems. We recall that the problem to analyse to what extent alternative quantum
descriptions survive when one considers compound systems and interactions among them was
already raised on in [15] with respect to Hermitian dynamics. We will show in this paper
that alternative descriptions play a crucial role in this respect; indeed, in section 3, we prove
a necessary and sufficient condition (propositions 2 and 3) which ensures such equivalence.
In particular, we prove that quasi-Hermitian descriptions for bipartite compound quantum
systems are permitted if and only if the positive operator which characterizes the alternative
inner product can be written as the tensor product of two positive operators on the component
spaces. (To avoid technicalities, we limit ourselves to consider here finite-dimensional bipartite
systems.) As a consequence, severe restrictions arise about the equivalence between PHQM
and QM for compound systems.

Then, these general results are illustrated by some examples in section 4, where also
reduced density matrices via partial traces are introduced; in particular, the example in
subsection 4.3 shows a physical situation where alternative descriptions of two interacting
subsystems associated with a quasi-Hermitian Hamiltonian are forbidden. Some concluding
remarks are drawn in the last section.

2. Alternative quasi-Hermitian descriptions

We begin by discussing alternative descriptions for quantum systems in the case of quasi-
Hermitian dynamics.

The spectral representation of an η-quasi-Hermitian Hamiltonian operator H with a
nondegenerate spectrum in terms of its biorthonormal eigenbasis, {|ψn〉, |φn〉}, reads [5]

H =
∑

n

En|ψn〉〈φn|, En ∈ R. (4)

2
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Furthermore,

η =
∑

n

|φn〉〈φn| (5)

and

η|ψn〉 = |φn〉.
By using the inner product (3) and the spectral representation (4), the expectation value

of H in a (normalized) state,

1√〈ψ |η|ψ〉 |ψ〉 = 1√〈ψ |η|ψ〉
∑

n

|ψn〉〈φn|ψ〉,

can be computed:

hη(ψ,Hψ) �
∑

n

Enp(En) =
∑

n

En

〈ψ |η|ψn〉〈ψn|η|ψ〉
〈ψ |η|ψ〉

=
∑

n

En

〈ψn|η|ψ〉〈ψ |η|ψn〉
〈ψ |η|ψ〉 =

∑
n

En

〈φn|ψ〉〈ψ |η|ψn〉
〈ψ |η|ψ〉

=
∑

n

〈φn|ψ〉〈ψ |ηH |ψn〉
〈ψ |η|ψ〉 = Tr

( |ψ〉〈ψ |η
〈ψ |η|ψ〉H

)
= Tr ρ̃H (6)

where

ρ̃ = |ψ〉〈ψ |η
〈ψ |η|ψ〉 .

More generally, if ρ denotes a generic (Hermitian, positive-definite) density matrix (Tr ρ = 1),
we can associate with it a generalized density matrix ρ̃ by means of the one-to-one mapping
in the following way [10, 17]:

ρ̃ = ρη

Tr ρη
(7)

and obtain

〈H 〉η = Tr ρ̃H.

The dynamics of ρ̃ is ruled at infinitesimal level by the Liouville–von Neumann equation
[17]

d

dt
ρ̃(t) = −i[H, ρ̃]. (8)

We note explicitly that the mapping (7) does not change the rank of the density matrices [18],

rank ρ̃ = rank ρ. (9)

Of course, in such a scheme, to different metric operators η and η′, both fulfilling relation (1),
correspond ‘alternative’ descriptions of the same quantum system.

It is clear that changing the inner product corresponds to different expectation values of
H on the same state |ψ〉. In fact, from equation (6), we obtain in general,

〈H 〉η = Tr

(
ρη

Tr ρη
H

)
�= Tr

(
ρη′

Tr ρη′ H
)

= 〈H 〉η′ . (10)

Moreover, denoting with S(̃ρ) the von Neumann entropy associated with a density matrix
ρ̃, as a consequence of equation (10) we immediately get

S(̃ρ) = −Tr(̃ρ log ρ̃) �= −Tr(̃ρ ′ log ρ̃ ′) = S(̃ρ ′),

3
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i.e., the von Neumann entropy depends on the alternative inner product. Then, we can conclude
that the entropy and the expectation value of quasi-Hermitian observables strongly depend on
the alternative description we consider on H.

Note that if ηHη−1 = H † and η′Hη′−1 = H † with η′ �= η, by performing in the Hilbert
space H the linear transformation induced by η

1
2 , we get

H → H ′ = η
1
2 Hη− 1

2 = H ′†, (11)

while the metric operators transform by congruence [19]:

η → η− 1
2 η(η)†−

1
2 = η− 1

2 ηη− 1
2 = 1,

η′ → η− 1
2 η′η− 1

2 (12)

and the η′-quasi-Hermiticity condition of H implies

[H ′, η− 1
2 η′η− 1

2 ] = 0,

i.e., η− 1
2 η′η− 1

2 belongs to the commutant of H ′ and represents the operator which connect
an alternative inner product invariant under time-translation generated by H ′ to the fiducial
scalar product (see also [16]). Then, in the space where H becomes Hermitian alternative
inner products can be obtained by means of positive-definite operators in the commutant of H ′

(coming back, the mapping (11), (12), can also be useful to compute the full set of η operators
fulfilling the quasi-Hermiticity condition). Moreover, the same calculations show that all the
statements for quasi-Hermitian Hamiltonians also hold, with minimal and obvious changes,
for the Hermitian ones.

3. Quasi-Hermitian bipartite quantum systems

Let us consider a compound bipartite quantum system which dynamics is described in a Hilbert
space Hnm of dimension nm by an evolution operator U such that

U †ηU = η,

where

U(t) = e−iHt

and the time-independent Hamiltonian H satisfies

ηHη−1 = H †, η > 0.

Then, the alternative Hermitian structure, hη(., .) = h1(., η.), is invariant under the dynamics
generated by H.

Now, a natural question arises: is it possible a proper quantum-mechanical description of
such quasi-Hermitian compound quantum systems in terms of their corresponding component
systems?

In order to answer to this question, as a preliminary step, we put the following proposition
which gives a necessary condition for an operator η of dimension nm to be written as the
tensor product of two operators of dimension n and m respectively: η = ξ ⊗ ζ .

Proposition 1. A positive Hermitian operator η with eigenvalues {ηij : i = 1, 2, . . . , n; j =
1, 2, . . . , m} acting on the complex vector space Hnm of dimension nm, can be decomposed
as η = ξ ⊗ ζ where ξ and ζ represent positive Hermitian operators acting on Hn and Hm

with eigenvalues {ξi : i = 1, 2, . . . , n} and {ζj : j = 1, 2, . . . , m} respectively, only if the
following n2 and m2 constraints are satisfied: ηij

ξi
= ηi′j

ξi′
, i, i ′ = 1, 2, . . . , n and ηij

ζj
= ηij ′

ζj ′ , j,

j ′ = 1, 2, . . . , m .

4
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Proof. Let us suppose η = ξ ⊗ ζ . Then, diagonalizing ξ and ζ (and suitably ordering the
spectra) we get

ξiζj = ηij ,

where i = 1, 2, . . . , n, j = 1, 2, . . . , m. From the invertibility of ξ and ζ we immediately get
ηij

ξi

= ηi ′j

ξi ′
, i, i ′ = 1, 2, . . . , n or

ηij

ζj

= ηij ′

ζj ′
, j, j ′ = 1, 2, . . . , m.

�

On the other hand, a sufficient condition in order that a given η operator satisfying the previous
constraints can be written as η = ξ ⊗ ζ , is that it must be diagonalizable by means of a unitary
transformation of the form U1 ⊗ U2 where U1 ∈ U(n, C) and U2 ∈ U(m, C).

Now, we denote with

U(nm, C, hη),

the group which preserve the alternative Hermitian structure hη.
Having in mind component systems, and recalling that in standard QM for any

U1 ∈ U(n, C) and U2 ∈ U(m, C)

U1 ⊗ U2 ∈ U(nm, C),

the following proposition gives a necessary and sufficient condition for the Hilbert spaces
Hn and Hm associated with the component systems to be provided of suitable alternative
Hermitian structures hξ and hζ such that for any Uξ ∈ U(n, C, hξ ) and Uζ ∈ U(m, C, hζ )

Uξ ⊗ Uζ ∈ U(nm, C, hη).

Proposition 2. For any Uξ ∈ U(n, C, hξ ) and Uζ ∈ U(m, C, hζ ), the group U(nm, C, hη)

contains the transformations

Uξ ⊗ Uζ

if and only if

η = ξ ⊗ ζ.

Denoting with Hn
ξ ,H

m
ζ and Hnm

η the group algebras associated with U(n, C, hξ ), U(m, C, hζ )

and U(nm, C, hη) respectively, proposition 3 can be equivalently restated in the following
form.

Proposition 3. The set Hnm
η of η-quasi-Hermitian matrices of dimension nm contain as its

subset

Knm = {Oξ ⊗ Oζ | Oξ ∈ Hn
ξ ,Oζ ∈ Hm

ζ },
where Hn

ξ represent the set of ξ -quasi-Hermitian matrices of dimension n and Hm
ζ represent

the set of ζ -quasi-Hermitian matrices of dimension m, if and only if

η = ξ ⊗ ζ.

Proof. Let us suppose η = ξ ⊗ ζ . Then, trivially, the set Knm is constituted by η-quasi-
Hermitian matrices, hence, Knm ∩ Hnm

η ≡ Knm. Conversely, let us suppose η �= ξ ⊗ ζ for
any positive operator ξ and ζ . The set Knm is obviously an irreducible set of ξ ⊗ ζ -quasi-
Hermitian matrices; then, by a known result in the literature (see [6]), the metric is unique (up
to a normalization factor), hence, it coincides with ξ ⊗ ζ . Then, the set Knm contain some
matrices that cannot be η-quasi-Hermitians, hence, Knm ∩ Hnm

η ⊃ Knm. �

5
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A direct consequence of proposition 3 is that the tensor product of two observables in (Hn, hξ )

and (Hm, hζ ) is certainly an observable in (Hnm, hη ), if and only if η = ξ ⊗ ζ . In particular,
let us assume, η �= ξ ⊗ ζ . Then, some elements of the set {Oξ ⊗ 1m, 1n ⊗ Oζ }, cannot be
observable. In fact, let us suppose

η(Oξ ⊗ 1m)η−1 = O
†
ξ ⊗ 1m

and

η(1n ⊗ Oζ )η
−1 = 1n ⊗ O

†
ζ

for any Oξ and Oζ . From the commutativity,

[Oξ ⊗ 1m, 1n ⊗ Oζ ] = 0,

we immediately get

η(Oξ ⊗ Oζ )η
−1 = O

†
ξ ⊗ O

†
ζ

whereas, according to the above hypothesis,

(ξ ⊗ ζ )(Oξ ⊗ Oζ )(ξ ⊗ ζ )−1 = O
†
ξ ⊗ O

†
ζ .

From the irreducibility of the set {Oξ ⊗ Oζ }, (see proposition 3) the thesis follows at once.
Then we can conclude that any η-quasi-Hermitian compound quantum system admits

a proper quantum-mechanical description in terms of component systems if and only if
η = ξ ⊗ ζ .

Note, of course, that if an operator η admits a decomposition η = ξ ⊗ ζ , such
decomposition is not unique. In fact, we can for instance change the operators ξ and ζ

by multiplying them by (positive) factors r and 1
r
, respectively.

Remark 1. Clearly if η = ξ ⊗ζ the peculiarity of a state, associated with a compound system,
to be entangled or not does not depend on the alternative structures hξ and hζ on component
spaces. In fact, let us consider

|β〉 = |χ〉 ⊗ |ω〉 ∈ Hnm.

Then,

|β ′〉 = S|β〉
is entangled if and only if S ∈ GL(nm, C) and S �= S1 ⊗ S2 for any S1 ∈ GL(n, C) and
S2 ∈ GL(m, C). Hence, the (alternative) Hermitian structure does not play here any role.

4. Examples

We illustrate the general results in the previous sections by means of some examples. In
order to do that, we first introduce the reduced density matrices for bipartite quasi-Hermitian
systems via partial trace operation.

Let be given a η-quasi-Hermitian Hamiltonian associated with a bipartite system,

H = HA ⊗ 1m + 1n ⊗ HB + Vint (13)

where we assume for the sake of simplicity that

HA =
n∑

i=1

ai |ψi〉〈φi |, ai ∈ R (14)

6
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and

HB =
m∑

j=1

bj |�j 〉〈�j |, bj ∈ R (15)

are quasi-Hermitians with a nondegenerate spectrum. Then, the more general ξ and ζ

operators satisfying the quasi-Hermiticity conditions, ξHAξ−1 = H
†
A and ζHBζ−1 = H

†
B ,

are respectively given by

ξ =
n∑

i=1

ri |φi〉〈φi |, ri > 0 (16)

and

ζ =
m∑

j=1

sj |�j 〉〈�j |, sj > 0. (17)

Then, any state |α〉
〈α|η|α〉 in the space Hnm provided with Hermitian structure hη, can be

decomposed on the biorthonormal basis {|ψi〉 ⊗ |�j 〉, |φi〉 ⊗ |�j 〉}:

1

〈α|η|α〉 |α〉 =
⎛⎝∑

i,j

|ψi〉 ⊗ |�j 〉(〈�j | ⊗ 〈φi |)
⎞⎠ 1

〈α|η|α〉 |α〉,

and the associated rank-one density matrix reads

ρ̃AB = |α〉〈α|η
〈α|η|α〉 .

Then, we immediately get

ρ̃A = TrB ρ̃AB =
m∑

j=1

〈�j |̃ρAB |�j 〉 (18)

and

ρ̃B = TrA ρ̃AB =
n∑

i=1

〈φi |̃ρAB |ψi〉. (19)

Moreover, being η = ξ ⊗ ζ , we obtain

ρ̃A = TrB ρ̃AB = ρAξ

Tr ρAξ
and ρ̃B = TrA ρ̃AB = ρBζ

Tr ρBζ
, (20)

where ρA and ρB denote the partial traces associated with the state |α〉〈α|
〈α|α〉 in the fiducial

(standard) description.
Now, we will consider some examples. In the first one, a dynamics generated by a

Hermitian Hamiltonian associated with a composite system on a four-dimensional Hilbert
space is described in terms of two alternative invariant inner products. In the second one,
alternative descriptions of a PT -symmetric quasi-Hermitian dynamics recently introduced in
the literature are considered. In the third one, alternative descriptions of a quasi-Hermitian
not PT -symmetric dynamics are considered.

7
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4.1. A Hermitian Hamiltonian

Because of the physical relevance of two qubit quantum gates, we shall now consider alternative
descriptions for an optimal entanglement generation recently introduced in the literature [20].
The system we consider is composed of two qubits A and B, hence H ≡ C

4.
The Hamiltonian and the evolution operator of the overall system are

H = σA
3 ⊗ 1B + 1A ⊗ σB

3 + Vint =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎟⎠ , (21)

U = cos t1A ⊗ 1B − i sin tσA
3 ⊗ σB

3 =

⎛⎜⎜⎝
e−it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e−it

⎞⎟⎟⎠ . (22)

Let the initial state be

ρA(0) ⊗ ρB(0) = 1

2

(
1 1
1 1

)
⊗ 1

2

(
1 −i
i 1

)
.

At time t we get

ρAB(t) = U(t)ρAB(0)U(t)†

and we obtain by partial traces the final states

ρA(t) = TrB ρAB = 1

2

(
1 cos 2t

cos 2t 1

)
,

ρB(t) = TrA ρAB = 1

2

(
1 −i cos 2t

i cos 2t 1

)
.

We stress that at the time tbell = π/4, the overall state ρAB(t = tbell) is equivalent to a Bell
state 1√

2
(|00〉 + |11〉).

The von Neumann entropy gives an entanglement measure:

S(ρA(t)) = −Tr(ρA log ρA)

= −(sin2 t) log(sin2 t) − (cos2 t) log(cos2 t). (23)

In particular, S(ρA(t)) = 0 when the state ρAB(t) becomes separable and this happens when
the purity [20] of both the reduced density matrices,

PρA(t) = Tr ρA(t)2 = 1
2 (1 + (cos 2t)2),

PρB(t) = Tr ρB(t)2 = 1
2 (1 + (cos 2t)2),

(24)

becomes 1, that is when t = kπ
2 , k ∈ N.

Now, let us consider in the Hilbert space associated with the compound system the most
general (in the sense of proposition 2) alternative scalar product which is connected with the
fiducial one by means of the (positive) operator,

η = ξ ⊗ ζ =
(

ξ1 0
0 ξ2

)
⊗

(
ζ1 0
0 ζ2

)
. (25)

The Hermitian structures hη and hξ , hζ are well-defined alternative inner products for
composite and component systems, respectively. In fact,

8
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[H, η] = 0, U †ηU = η,[
σA

3 , ξ
] = 0,

[
σB

3 , ζ
] = 0,

hence, H, σA
3 and σB

3 are also Hermitian with respect to hη, hξ and hζ , respectively.
The initial density matrix in the description associated with hη reads

ρ̃AB(0) = (ρA(0) ⊗ ρB(0))η

Tr(ρA(0) ⊗ ρB(0))η
.

At time t we get

ρ̃AB(t) = U(t )̃ρAB(0)U(t)†

and from equation (20), the reduced density matrices can be computed:

ρ̃A(t) = TrB ρ̃AB = 1

ξ1 + ξ2

(
ξ1 ξ2 cos 2t

ξ1 cos 2t ξ2

)
,

ρ̃B(t) = TrA ρ̃AB = 1

ζ1 + ζ2

(
ζ1 −iζ2 cos 2t

iζ1 cos 2t ζ2

)
.

Note that ρ̃A(t) and ρ̃B(t) are ξ - and ζ -quasi-Hermitian, respectively.
The eigenvalues of ρ̃A(t) are

r± = 1

2

⎛⎝1 ±
√

ξ 2
1 + ξ 2

2 + 2ξ1ξ2 cos 4t

ξ1 + ξ2

⎞⎠ ,

hence, its von Neumann entropy reads now

S(̃ρA(t)) = −Tr(̃ρA log ρ̃A)

= − r+ log r+ − r− log r−. (26)

It is then evident that, the entropy depends on the alternative scalar product, in fact, from
equations (23), (26), we immediately get

S(ρA(t)) �= S(̃ρA(t)).

Then, the entanglement measure strongly depends on the alternative Hermitian structure.
It is worthwhile to note however that, S(̃ρA(t)) = 0 when the purity of both the reduced

density matrices

Pρ̃A(t) = Tr ρ̃A(t)2 = 1

2

(
1 +

ξ 2
1 + ξ 2

2 + 2ξ1ξ2 cos 4t

(ξ1 + ξ2)
2

)
,

Pρ̃B(t) = Tr ρ̃B(t)2 = 1

2

(
1 +

ζ 2
1 + ζ 2

2 + 2ζ1ζ2 cos 4t

(ζ1 + ζ2)
2

)
,

(27)

becomes 1 and this happens again when t = kπ
2 , k ∈ N.

From equations (24), (27) we conclude that whereas the entropy depends on the alternative
inner product, the peculiarity of a state to be entangled or not does not depend on the alternative
description (see also equation (9)) as we can expect from general considerations (see the remark
in section 3).

9
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4.2. A PT -symmetric Hamiltonian

Now, we discuss a recently introduced coupling between two qubits separately described by
a Hermitian Hamiltonian and by a PT -symmetric Hamiltonian respectively [21], in terms of
compound and component systems. In particular, we consider the Hermitian Hamiltonian

HA =
(

1 0
0 1

)
(28)

and the non-Hermitian Hamiltonian with real eigenvalues

HB = 1

2

(√
3 + i 2
2

√
3 − i

)
, (29)

both the above Hamiltonians are PT -symmetric, where

P = σ1 =
(

0 1
1 0

)
, T = K

(K denotes complex conjugation). Then, we couple them by means of nonzero elements in
the off-diagonal sectors, obtaining so (with a coupling constant ε = 1

2 )

H = HA ⊗ 1B + 1A ⊗ HB + Vint = 1

2

⎛⎜⎜⎝
2 0 1 0
0 2 0 1
1 0

√
3 + i 2

0 1 2
√

3 − i

⎞⎟⎟⎠ . (30)

As we said above, such Hamiltonian is obtained by a suitable choice of parameters from
that considered in [21].

The coupling terms are chosen in such a way that H remains invariant under the combined
parity reflection and time reversal, where T = K and

P = 1A ⊗ σ1 =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ . (31)

Being ε = 1
2 , the eigenvalues of the combined system are real [21] and a positive-definite

η can be written as

η = 1A ⊗ ζ (32)

where ζHBζ−1 = H
†
B ; for instance,

ζ =
(

2 −√
2 − i

−√
2 + i 2

)
.

Clearly, by considering the (infinite) set of positive operators ζ satisfying the quasi-
Hermiticity condition, ζHBζ−1 = H

†
B , we obtain a set of possible η operators on C

4 of the
form, η = ξ ⊗ ζ , permitting alternative quasi-Hermitian descriptions of our system in terms
of its component systems. For the sake of brevity we do not compute here the evolution of the
overall system, the reduced density matrices and their von Neumann entropy as in the previous
example.
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4.3. A quasi-Hermitian not PT -symmetric Hamiltonian

Finally, let us consider a quasi-Hermitian Hamiltonian H on C
4, obtained by taking the direct

sum of the Hermitian not PT -symmetric Hamiltonian, HA = (1 0
0 2

)
, and the PT -symmetric

Hamiltonian, HB given in equation (29):

H =
(

HA 0
0 HB

)
= 1

2

⎛⎜⎜⎝
2 0 0 0
0 4 0 0
0 0

√
3 + i 2

0 0 2
√

3 − i

⎞⎟⎟⎠ . (33)

A direct computation shows that H is not invariant under the combined parity reflection
given by (31) and time-reversal T = K , but it is surely quasi-Hermitian since it is
diagonalizable with real spectrum.

Let us show that the Hamiltonian (33) cannot admit a positive η operator, satisfying the
quasi-Hermiticity condition, of the form η = ξ ⊗ ζ , were ξ and ζ are positive operators on
C

2. In fact, writing

ξ =
(

a z

z∗ b

)
, a, b ∈ R, z ∈ C,

the conditions: det ξ > 0(⇒ ab > 0) and Tr ξ = a + b > 0, which ensure the positivity of ξ ,
imply that a, b must be non-zero, positive real numbers.

Let us now consider the Kronecker product

η = ξ ⊗ ζ =
(

aζ zζ

z∗ζ bζ

)
and impose

ηH = H †η. (34)

Equation (34) is equivalent to the following matrix equations:

ζHA = HAζ, (35)

ζHB = H
†
Bζ, (36)

z(ζHB − HAζ) = 0. (37)

From equation (11) we immediately obtain that ζ must have a diagonal form, but a direct
computation shows that no diagonal ζ can satisfy equation (12). Then, in this case no
invertible, Hermitian positive operator η exists which satisfies the condition η = ξ ⊗ ζ .

Then, we conclude that in this case, quasi-Hermitian descriptions for subsystems are
forbidden.

5. Concluding remarks

In this paper we considered some features of alternative descriptions of simple and compound
quantum systems and we have shown, also by means of examples, that the entanglement
measure (von Neumann entropy) strongly depends on the alternative Hermitian structure.
Moreover, we have analysed to what extent Hermitian and quasi-Hermitian quantum
descriptions of compound systems survive.

The main result of our paper is that if (and only if) the alternative Hermitian structure is
connected with the fiducial ones by means of a positive operator η such that

η = ξ ⊗ ζ,

the projection on the component spaces can be performed via partial trace operation.

11
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In contrast, if

η �= ξ ⊗ ζ

quasi-Hermitian descriptions for the component subsystems cannot be obtained and the
corresponding physical theories are inconsistent (at least, according to the usual physical
interpretation of the mathematical entities).

These results, as a consequence, pose severe restrictions on PHQM, in particular with
respect to the asserted equivalence between such theories and standard quantum mechanics.

In fact, we observe that whereas the set of alternative inner product associated with
Hermitian Hamiltonians admits a not void subset of operators of the form η = ξ ⊗ ζ (in fact
the identity trivially belongs to this subset), the example in subsection 4.3 shows that when
η-quasi-Hermitian Hamiltonians are considered the existence of such a form of η cannot be
assured. However, the example in subsection 4.2 suggests that the existence of operators of
the form η = ξ ⊗ ζ could be ensured in case of PT -symmetric Hamiltonians.

A complete characterization of the subclass of quasi-Hermitian Hamiltonians admitting η

operators of the form η = ξ ⊗ζ and the generalization of these results to multipartite quantum
systems will be considered in a forthcoming paper [22].

We hope that the present developments on alternative descriptions for quasi-Hermitian
dynamics associated with bipartite compound quantum systems could be also useful, as a
preliminary step, in order to study the entanglement in the context of formulations of quantum
mechanics with non-Hermitian operators and to obtain a classification of (positive) dynamical
maps in the space of quasi-Hermitian density matrices.
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